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evidence that the ground state of the Hubbard Hamil -

tonian can ever by ferromagnetic. For any spin
state, there are many opportunities for hopping
without having an extra pair of two electrons on the
same atom. Since a nonmagnetic state has the
possibility of lowering the energy by allowing an
optimum number of doubly occupied atoms, while
the fully ferromagnetic state has no such opportu-
nity, it is very unlikely that the exact ground state
is ferromagnetic.

In the case of a linear chain of atoms with the
hopping matrix elements € zg. nonzero only for
nearest neighbors, Lieb and Mattis'® have proved
that the ground state is always a singlet or a
doublet but never ferromagnetic. Hubbard® has
calculated the ferromagnetic instability of a non-
magnetic state and shown that such instability can
occur only if the density of states at the Fermi
level is much higher than the average over the band.

These results incline one to suggest that the
present model can never be ferromagnetic and the
present treatment on the stability of an antiferro-
magnetic state against a nonmagnetic state will be
justified even though the ferromagnetic instability
is not ~onsidered. Ferromagnetism is expected to
appear if the degeneracy of d electrons is explicitly
taken into account, and then it becomes necessary
to investigate the ferromagnetic instability of an
antiferromagnetic solution. However, the spin
polarization of bands which yields the antiferro-
magnetic stability against a nonmagnetic state is
different from the splitting of spin-up and spin-
down bands which leads to the ferromagnetic stabil-
ity against the same nonmagnetic state. The ferro-
magnetic instability of an antiferromagnetic solu-
tion is not known, and we have to compare the ener-
gies of the two-distinct state to see which one of
the solutions is more stable than the other.
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delle Ricerche, Italy.
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A general magnetic-pseudopotential theory has been developed for Bloch electrons in a
magnetic field. This theory is a generalization of the earlier formulations of Misra and

Roth, and Misra, and it includes the effects of spin and spin-orbit interaction.

In this meth-

od, tight-binding and orthogonalized-plane-wave functions are constructed which have the
symmetry of the magnetic Bloch functions and which form a complete set for the wave func-
tion of the Hamiltonian of the crystal in a magnetic field. These are used as basis states
for the wave function of an eigenstate of the problem, and an effective Hamiltonian is ob-
tained which includes the magnetic pseudopotential. The magnetic pseudopotentials due to
Misra and Roth, and Misra, and zero-field pseudopotentials, are obtained from this general

magnetic pseudopotential in appropriate limits.

The expression for the magnetic pseudopo-

tential has been obtained in a form such that it can be calculated to any order in the magnetic

field. This expression is further simplified for metals.

The immediate purpose of this

formulation is to calculate the total magnetic susceptibility of metals and alloys.

I. INTRODUCTION

Recently, Misra and Roth' have introduced a

modified pseudopotential method in the theory of
Bloch electrons of simple metals in a magnetic
field. Misra® has extended this method, which he
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referred to as the magnetic-pseudopotential method,
so that it can be applied to metals with more than
one atom per unit cell, to alloys, and to imperfect
lattices. In this method, tight-binding and orthog-
onalized-plane-wave (OPW) functions are con-
structed which have the symmetry of the magnetic
Bloch functions and which form a complete set for
the wave function of the Hamiltonian of the crystal
in a magnetic field. These are used as basis

states for the wave function of an eigenstate of the
problem and an effective Hamiltonian is obtained
which differs from the effective Hamiltonians of
Kohn,® Roth,* and Blount® in the sense that there is
a magnetic pseudopotential in the Hamiltonian which
can be calculated to any order in the magnetic field.

The magnetic-pseudopotential method is impor-
tant in the theory of Bloch electrons in a magnetic
field in two ways. Firstly, this method has proved
to be very useful in the calculation of diamagnetic
susceptibility of metals® since, in this approach,
which is different from traditional band calculations,
perturbation theory can be used. Secondly, it has
been the usual practice to solve the problems of
Bloch electrons in a magnetic field by using the
asymptotic solution methods of Kohn,® Wannier and
Fredkin,” Roth,* and Blount.® In these methods,
which are essentially equivalent, the Hamiltonian
of the Bloch electrons in a magnetic field is trans-
formed into effective one-band Hamiltonians which
are obtained in the form of an asymptotic expansion
in powers of field strength. The solution of the
general eigenvalue problem of a one-band Hamilton-
ian had been obtained by Zilberman® by application
of the Wentzel-Kramers-Brillouin (WKB) method.
He had found a close connection with the electron
orbits of the semiclassical theory and confirmed
Onsager’s quantization rule.® Owing to this close
relation between the problems with and without
fields, experiments in magnetic fields are per-
formed to obtain information about properties of
solids in the absence of the field. However, as the
experimental field strength is gradually increased
this relation is gradually lost, since it is established
by asymptotic solution methods which lose their
validity. The only method available at present
whose range of validity enlarges with increasing
fields is the nearly-free-electron approximation.
Therefore, it is necessary to reformulate the theory
of Bloch electrons in a magnetic field in terms of
the pseudopotential theory.

However, the magnetic-pseudopotential formula-
tion of Misra and Roth,' and Misra® has only limited
application since spin has not been included in their
theory. Thus, as an example, it cannot be used to
calculate the total magnetic susceptibility of metals
and alloys. Further, in many problems of Bloch
electrons in a magnetic field, the spin-orbit inter-
action plays an important role. An example is the

diamagnetism of bismuth.'® The magnetic-pseudo-
potential theory of Misra and Roth,' and Misra® can-
not be applied to such problems.

In the present paper we formulate a general mag-
netic-pseudopotential theory for Bloch electrons
in a magnetic field in which spin and spin-orbit in-
teractions have been included. The magnetic
pseudopotentials of Misra and Roth," and Misra,2
and the zero-field pseudopotentials''~!* are obtained
from this general pseudopotential in the appropriate
limits. The immediate purpose of our formulation
is to calculate the total magnetic susceptibility of
metals using this theory, which we shall report in
a future paper, but we hope that this method will
be useful to solve problems of Bloch electrons in
high magnetic fields.

In Sec. II we make a general formulation of the
magnetic-pseudopotential theory. In Sec. III we
obtain an expression for this pseudopotential in a
form such that it can be calculated to any order in
the magnetic field. We also show that the magnetic
pseudopotentials of Misra and Roth,' and Misra,?
and the zero-field pseudopotentials'!'~'* are obtained
in the appropriate limits. In Sec. IV we derive a
much simpler expression for metals. In Sec. V
we summarize and discuss our results.

II. GENERAL MAGNETIC-PSEUDOPOTENTIAL
FORMULATION

We begin with the Hamiltonian for an electron in
a periodic potential V() and a constant magnetic
field H described by the vector potential KG‘):
}C=ﬁ (f)+ f gﬂ 0’><VV(I"> +-—lz— o H+ V(F) ,

¢y

where P is the momentum operator, ujp is the Bohr
magneton, o is the Pauli spin operator, gy~ 2 is the
free-electron g factor, and e, m, and c have their
usual meanings (Z=1 throughout the paper). This
gives the spin-orbit interaction correctly to order
€/mc? and is gauge invariant.

It is well known that in the case of Bloch electrons
in a magnetic field, the Bloch functions do not form
a useful representation as there are singular inter-
band matrix elements. Recently, Misra'® has ob-
tained a class of representation for Bloch electrons
in a magnetic field (without considering spin) by
using only the translationai properties of the Hamil-
tonian. When the condition that these basis functions
reduce to Bloch functions is included, a set of
magnetic Bloch functions, first used by Roth,*
obtained. It has also been shown by Misra'® that
these functions are complete with respect to the
wave function of an electron in a periodic potential
and a uniform magnetic field. We shall use this
representation with suitable modifications to include
spin. This modified Bloch representation is defined
as follows. Let U,;,(T) be spinors,
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Unis(-f') = (Uni' (Y‘)’ Un[l G)) ’ (2)

where # is a band index, k is the wave vector, s

is the spin index, and U,;(F) are periodic functions
of T of the Bloch function for zero magnetic field
(without spin). We assume that U,;,(T) are linearly
related, in spin space, to the functions U,;(T):

Unis = UniXs - (3)

Let « be the Fourier transform of the free-particle
kinetic-momentum operator,

k=k+(e/c)AGV,) . )
Then the basis functions in the magnetic field

15,16
are

¢nis=Um£*seu.F: (5)

where the wave vector k has been replaced by the
operator k* symmetrically in U,3,. Thus the wave
function of the system has the form

V(E, 0= 2 Uprge™® ¥y, (k, 1)
nks =
=D e Ty, ) b0, (6)
nks

the latter being obtained by an integration by parts.
In order to use the above representation for the
crystal in the magnetic field, we shall first obtain

the Bloch functions in the zero-magnetic-field case.

Let &, be spinors pertaining to a state ¢ where ¢
stands for quantum numbers n, I, and m. We have

q’cs= (¢cn ¢ca) . (7)

The spinors ®.; are not necessarily the core eigen-
functions of the full Hamiltonian, but they are the
eigenfunctions of the spinless Hamiltonian with
eigenvalues €,,=¢,. We assume, as is done in

the theory of atomic states, that the actual core
functions are linearly related in spin space to the
no-spin core functions

Qes=Pexs - (8)
We now construct the Bloch functions in a tight-
binding approximation
|
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'I’c.ks(?) = \ﬁvl— ?eﬁ " @936 -Y‘j) ) (9)

where T, is the position of the ions which can be of
different types. So the periodic part is

Usts®) =757 L e e o FoF,)y, (10)

We construct an orthogonalized plane wave
q’l.‘k.s(—f) = e‘(i o .iXs "‘Z: l <§c:is’ > <¢cis’ ‘ el(k *o- i‘))(s )
cs'
(11

where q is a wave number. Thus the periodic part

is
Ua,;_s(x'-)=e‘a # s =20 | W) (‘uc;\em"’)xs. (12)

We now construct Um(f' ) and Uy,,,s(F) from these
spinors by replacing k by symmetrically, i.e.
in the exponential. We can n show

cxs(—.” Uc xs(f' ) 6¢:c' ’ (13)
cxs(f' .Ui,xs(-f» 0 (14)

which is due to the neglect of the overlap function.
Therefore, for the crystal in a magnetic field, the
basis functions are the complete set

Ucf*s(f‘)e“'f, Ua,,_*,sﬁ)e“'? ,

and these have the symmetry of the Bloch functions.
Thus the wave function of an eigenstate of the prob-
lem is

‘1’(1.‘, t)zzeli'f‘
k

( Uns ) Ui &, 1)+ L U@l t)>, (15)

where y,,(k, £) and zpa,(f{ t) are the time-dependent
coefficients. We make the requirement zpa,(k+q , B)
=g.%,s&, #), so thatthe summand is periodic in
k. Substituting Eqs. (1) and (15) in

¥ (F) = E¥(r) , (16)

we obtain

x 2
[ﬁ(ﬁ—c‘ﬁgg axvvm) Ee g, v@]z 7 (D Ve 00,2 Uq.x,s(f)a»u&))

=E%} e‘i : ;<Z chss(-f) chs(-l.() +_Z) Ulns(;‘) %(‘E)) . (17)
cs qs =

It can be shown by integrating parts that Eq. (17) can be written as

1

SN k.
e
Bt o

o (B oxvvo'r) ks 5 H+v(f~] (D Oecs®) 1,80+ S U3 ) v, 0)

-EZ e‘“(z Uegs®) 4esB)+ T U ) %(E)) . (18)
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Let
j(’.(x'-,p+x,o)— <D+K+—2‘L——0XVV(Y‘> &L—ZMB G- H+V(E) . (19)
We now define the operator V,, such that
Vs Fxy= = D @, D+ K, 3) = El|U ) (Uoel e F) xs - (20)
From Eqgs. (18) and (20), we have
T e P, Bk, ) + Vg —E) Uiy (F) Ve ®'
e X L3
v 5 e R, DK, 0+ Vg —Ele™ Ty gy &)=0. (21)
-q'v.klts' - -
Multiplying by e *¥* ©'%' on the left, we have
> fd'e-l(ﬁvk -k # XIDCE, D+ K, 8) = E] Uy o gr Yor s &)
o K
+ D /dre'“" E e, DK, D)+ Vg —Elxebes®)=0.  (22)
a’k's'

We can also multiply Eq. (21) on the left by Ul e "
another equation relating ¥ .,(K) and 94,(K).
so we can eliminate ., from these equations.

a.z?{f dTe 1 FX'[zl (p+x+

Then

2c

where Iy .o is a complicated interaction part between core terms and conduction-electron terms.

shown that

NZ

c's’’

Ly s = =

v [Eerny [ oE

c's’’

This part contributes to the susceptibility of the
conduction electrons a term which is similar to the
Van Vleck paramagnetism except that it is a con-
tribution to the susceptibility of Bloch electrons
due to the presence of the core. It also consists
of matrix elements between OPW’s and core terms.
These terms are important for evaluation of the
total magnetic susceptibility, but we shall not dis-
cuss them here since they are not included in the
magnetic-pseudopotential formulation. We can
now write Eq. (23) in the alternate form (excluding
the interaction term)

(0l = Ey(K) (25)
where
1 /. Up - - =
}C(E)"'m(p“_‘_*g_: O'XVV)2+g92E-§o H+ W, (F)
(26)
and W&s(?) is the magnetic pseudopotential
Weo(F) = V(E) + Vo ) (27)

Thus we have now obtained an effective Hamiltonian

Es a><VV> &*’Zi@?;- H+v(E)+ VES—E]e“‘

-————1 E T B p 2l E -
(€ _E)/df(bg,_w'—n-- rx(p+g—c§ 0XVV>‘I>C'3~5') dr QZ,S,,(Y");{- r’Xé”‘L

* and integrate over the crystal. Then we would obtain

We are at present concerned with the conduction-electron case,

we shall obtain

- ?Xs’ zpi's' (-f{) +Iii'ss' wﬁ‘s' (f{)}: 0 ) (23)

It can be

Ug -
ﬁ"”")“’ﬂ :

hoghys

KB~
(p e "XVV)* 2m

-

}C(K) However, it differs from the effective
Hamiltonian of Roth‘ because we now have a mag-
netic pseudopotential in the Hamiltonian. As
shown in Refs. 1 and 6, the calculation of the dia-
magnetic susceptibility is considerably simplified
in the magnetic-pseudopotential formalism. Ina
future paper we shall show that our formulation

of the magnetic pseudopotential considerably sim-
plifies the calculation of the total magnetic suscep-
tibility of metals which would include the spin-orbit
interaction. We note that there are alternate ways
of constructing the magnetic pseudopotential. For
example, we can start with the empty lattice mag-
netic Bloch functions'™!® and orthogonalize them

to the “tight-binding” magnetic Bloch functions in
the spirit of the OPW and construct a pseudopoten-
tial.

0177] q>ﬁ'us' G c tgt G‘) . (24)

III. CALCULATION OF GENERAL MAGNETIC
PSEUDOPOTENTIAL

In order to obtain an expression for the magnetic
pseudopotential in a form such that it can be calcu-
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lated to different orders of the magnetic field, we

shall use the extended multiplication theorem of

Roth.? This theorem states that if A(k B(k) and

c(k) are symmetrized functions of k from which the

operators A(k), B(k), and C(k) are formed by re-
placing k by k, and if

A(x)B(x)C(k) = D(x) ,

then D(g_) is the operator formed from

(28)

1

(@5’ Vu|q8>——— =

clm
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D(E): exp[—i-ﬁ . (VkX Vkl + V,,X Vku + Vk: X an]
x AR BE)CK)| yoo cprens (29)

where .
h=eH/2¢ (30)

and H is the magnetic field. Using this in Eq. (20)
it can be shown that the matrix elements of the
symmetrized function Vi, are given by

& 07’ ot e it ""exp[-—l(k+q) T -7)+i(k+q)- ']X;,[(l—i-l.l- (F -T,)x7’

hash - - pz e » - Lpg - = uz -
_haghys = - 1) (- . (ox Soklls =, B -
g T -7). r,),yByﬁ) (2 + V(I‘)+——'2—z4 P (oXVV)+ 5 O H+———58 = (GXVV)°=E

h

h - R - - . - -
+’,;' (I-_r,)><p+—;-ér;11£ [(f-rz)a(f‘-rt)obaﬂ Zz(f'—r,)s(f‘—r,),paygj

+—4Wezzg [ =ik =T )% [E-F) - vV(R- O =G VV)F-T))- 5]] X (T =T,) ¥ Ixs,  (31)

where we have used the notation

hos= € apyhy »

where €4, is the antisymmetric tensor of third rank, and we use the Einstein summation convention.

(32)

The

matrix elements of V,, the repulsive part of the magnetic pseudopotential, are obtained by replacing K by

k in the exponential (i.e., symmetrically).

it is sufficient to calculate the matrix elements of Vis.

alternate form

We note that for the calculation of the magnetic susceptibility

It can be shown that Eq. (31) can be written in the

@'Vl ) = @' VaslG) + 2 f & @ e el iR+ ) - G ~F)) + iR+ ) T DX

pZ
X[zh T -T,) %7’ (EEJ' V(f‘)+——z—z P (o><VV)+

-

-k G -F)xp-ER T HrE,- m[(i—r,) V- §) - (- V) F-F)

2
V(gpr;+V(.f‘ +-—r2' P (chVV)+

(ngv)z gﬂl—"’ H E)

2y (GX IV mo - E)

- Nys
] LZBL(F rz) (‘ ﬂ‘s’rs

haghy - -
~"om 3 (¢3 —rl)BG' =T,)60ay

+2i(F —?,)B(f-?,),par;h%’%c% F =T [E =) - vV(a- ) =(h- VW) F-F))- E]]q;c(f -T) 0¥ )xs, (33)

where (q's’| Vz;1qs) are the matrix elements of the
zero-field pseudopotential and E, is the contribu-
tion to the energy due to the spin part only. It can
be easily shown that for zero spin, Eq. (33) re-
duces to the expression for the magnetic pseudopo-
tential obtained by Misra.? It is also evident from
Eq. (33) that in the limit of zero magnetic field

the magnetic pseudopotential reduces to the zero-
field pseudopotential,'®!* as it should.

[
IV. MAGNETIC PSEUDOPOTENTIAL FOR METALS

In the case of metals, Eq. (33) can be further
simplified. We have

VG)=Z;I 'U(-I.' "Y'j) .

Further, the zero-field pseudopotential can be
separated into a sum of individual pseudopotentials
centered upon the ions:

(34)
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VRI:EJIJR;G "-1.‘1) . (35)
From Egs. (33)—(35) we have
@'s'| Vis|as) =@ )

(1)

s'I‘U(O)+'U“ +'U- .. |qs), (36)

|

S

where

- 1 eRgedde
5@ a4 =7z Ee"‘ Fie e Fm (37)

and’U(;o;, 'U;S 'U(;zs), ..., are the symmetrized func-

tions of k to d1fferent orders in the magnetic field,

s/ [0 88) = @' [Vl ) = f 7 &89 798 gl Ty, (38)

@' ‘”lq8>=é— E/dfdf' expl—i(&+3) - T+ik+q) - ¥ x
0 c

2
F AV e+ (= KB EXVV)E = >___.
x[zﬁ rxT (Q*’WP (OXVV)+W(O V)’ -E -

-

h = oz e
(L+ZS)+E3—W

(G- vV G- 5) -G IV G- an] 6@ orE)xs, (39

q 'I'O‘z)[qs)——zfdf'df‘ expl-i(k+q) - T+ilk+3) - ¥y [——-éLh-Lrar,'r{,'r’o(ec+4—-rgp (TxVvV)

+—8——z (gXVV)2+%“—§

haphye

o- H—E)— om

1'51’56,,,+ thas LT (T.+29)

2 (G YN B 5 -G I G a]] $(E) $2E)xs > (40)

where Qy=Q/N=volume per ion. The matrix ele-
ments of ,U(O) (1) (2)

ks> Uksy Uksy +-., Are obtained from the
matrix elements of v}, vf), V¥, ..., by replacing
the wave vector k by the operator k in the exponen-
tial, i.e., symmetrically.

It can be easily shown from Eq. (37) that all

S(ﬁ,ﬁ ) terms vanish except those for which both
q and ¢’ lie on a reciprocal 1att1ce So the only
nonvanishing terms are the S(G é) terms, where
G and G’ are the reciprocal-lattice vectors.

V. SUMMARY AND CONCLUSION

In this paper a general magnetic-pseudopotential
theory has been formulated for Bloch electrons in
a magnetic field. In this method, tight-binding and
OPW functions have been constructed which have
the symmetry of the magnetic Bloch functions and
which form a complete set for the wave function of
the Hamiltonian of the crystal in a magnetic field.
These have been used as basis states for the wave
function of an eigenstate of the problem, and an

effective Hamiltonian is obtained which is different
from the effective Hamiltonians of Kohn,® Roth,*
Blount,® and Misra, Mohanty, and Roth® in the sense
that there is a general magnetic pseudopotential in
the Hamiltonian. The expression for the magnetic
pseudopotential has been obtained in a form such
that it can be calculated to any order in the mag-
netic field. It is shown that this expression becomes
particularly simple for metals.

The immediate purpose of this formulation is to
use it to calculate the total magnetic susceptibility
of metals, which shall be reported in a future pa-
per. This approach would be different from tradi-
tional band calculations in the sense that perturba-
tion theory can be used to calculate the total mag-
netic susceptibility of metals. However, it is
hoped that this method can be applied to other prob-
lems of Bloch electrons in a magnetic field. It is
also noted that there can be alternate ways of con-
structing the magnetic pseudopotential just as there
are alternate ways of constructing the zero-field
pseudopotential.
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